
node.js

ry@tinyclouds.org

November 8, 2009



node.js in brief:

I Server-side Javascript
I Built on Google’s V8
I Evented, non-blocking I/O. Similar to

EventMachine or Twisted.
I CommonJS module system.
I 8000 lines of C/C++, 2000 lines of

Javascript, 14 contributors.



I/O needs to be done differently.



Many web applications have code
like this:

var result =
db.query("select * from T");

// use result

What is the software doing while it
queries the database?



In many cases, just waiting for the
response.



I/O latency

L1: 3 cycles

L2: 14 cycles

RAM: 250 cycles

DISK: 41,000,000 cycles

NETWORK: 240,000,000 cycles

http://duartes.org/gustavo/blog/post/

what-your-computer-does-while-you-wait

http://duartes.org/gustavo/blog/post/what-your-computer-does-while-you-wait
http://duartes.org/gustavo/blog/post/what-your-computer-does-while-you-wait


Better software can multitask.

Other threads of execution can run
while waiting.



Is that the best that can be done?

A look at Apache and NGINX.



Apache vs NGINX
concurrency × reqs/sec

http://blog.webfaction.com/a-little-holiday-present

http://blog.webfaction.com/a-little-holiday-present


Apache vs NGINX
concurrency × memory

http://blog.webfaction.com/a-little-holiday-present

http://blog.webfaction.com/a-little-holiday-present


Apache vs NGINX

The difference?

Apache uses one thread per
connection.

NGINX doesn’t use threads. It uses
an event loop.



I Context switching is not free
I Execution stacks take up memory

For massive concurrency, cannot
use an OS thread for each
connection.



Green threads or coroutines can
improve the situation dramatically

BUT there is still machinery involved
to create the illusion of holding
execution on I/O.



Threaded concurrency is a leaky
abstraction.



Code like this

var result = db.query("select..");
// use result

either blocks the entire process or
implies multiple execution stacks.



But a line of code like this

db.query("select..", function (result) {
// use result

});

allows the program to return to the
event loop immediately.

No machinery required.



db.query("select..", function (result) {
// use result

});

This is how I/O should be done.



So why isn’t everyone using event
loops, callbacks, and non-blocking
I/O?

For reasons both cultural and
infrastructural.



Cultural Bias
We’re taught I/O with this:

1 puts("Enter your name: ");
2 var name = gets();
3 puts("Name: " + name);

We’re taught to demand input and do
nothing until we have it.



Cultural Bias

Code like

1 puts("Enter your name: ");
2 gets(function (name) {
3 puts("Name: " + name);
4 });

is rejected as too complicated.



Missing Infrastructure

So why isn’t everyone using event
loops?

Single threaded event loops require
I/O to be non-blocking

Most libraries are not.



Missing Infrastructure
I POSIX async file I/O not available.

I Man pages don’t state if a function will access the
disk. (e.g getpwuid())

I No closures or anonymous functions in C; makes
callbacks difficult.

I Database libraries (e.g. libmysql client) do not
provide support for asynchronous queries

I Asynchronous DNS resolution not standard on most
systems.



Too Much Infrastructure
EventMachine, Twisted, AnyEvent
provide very good event loop
platforms.

Easy to create efficent servers.

But users are confused how to
combine with other available
libraries.



Too Much Infrastructure

Users still require expert knowledge
of event loops, non-blocking I/O.



Javascript designed specifically to be
used with an event loop:

I Anonymous functions, closures.
I Only one callback at a time.
I I/O through DOM event callbacks.



The culture of Javascript is already
geared towards evented
programming.



This is the node.js project:

To provide a purely evented,
non-blocking infrastructure to
script highly concurrent programs.



Design Goals

No function should direct perform I/O.

To receive info from disk, network, or
another process there must be a
callback.



Design Goals
Low-level.

Stream everything; never force the
buffering of data.

Do not remove functionality present
at the POSIX layer. For example,
support half-closed TCP
connections.



Design Goals

Have built-in support for the most
important protocols:

TCP, DNS, HTTP



Design Goals

Support many HTTP features.

I Chunked requests and responses.
I Keep-alive.
I Hang requests for comet

applications.



Design Goals

The API should be both familiar to
client-side JS programmers and
old school UNIX hackers.

Be platform independent.



Usage and
Examples
(using node 0.1.16)



Download, configure, compile, and
make install it.

http://nodejs.org/

No dependencies other than Python
for the build system. V8 is included in
the distribution.

http://nodejs.org/


1 var sys = require("sys");
2

3 setTimeout(function () {
4 sys.puts("world");
5 }, 2000);
6 sys.puts("hello");

A program which prints “hello”, waits
2 seconds, outputs “world”, and then
exits.



1 var sys = require("sys");
2

3 setTimeout(function () {
4 sys.puts("world");
5 }, 2000);
6 sys.puts("hello");

Node exits automatically when there
is nothing else to do.



% node hello_world.js
hello

2 seconds later...

% node hello_world.js
hello
world
%



Change the “hello world” program to
loop forever, but print an exit
message when the user kills it.

We will use the special object
process and the "SIGINT"
signal.



1 puts = require("sys").puts;
2

3 setInterval(function () {
4 puts("hello");
5 }, 500);
6

7 process.addListener("SIGINT",
8 function () {
9 puts("good bye");

10 process.exit(0)
11 });



process.addListener("SIGINT", ...);

The process object emits an event
when it receives a signal. Like in the
DOM, you need only add a listener to
catch them.



Also:

process.pid

process.ARGV

process.ENV

process.cwd()

process.memoryUsage()



Like process, many other objects
in Node emit events.



A TCP server emits a
"connection" event each time
someone connects.

An HTTP upload emits a "body"
event on each packet.



All objects which emit events are are
instances of
process.EventEmitter.



Write a program which:

I starts a TCP server on port 8000
I send the peer a message
I close the connection



1 var tcp = require("tcp");
2

3 var s = tcp.createServer();
4 s.addListener("connection",
5 function (c) {
6 c.send("hello!");
7 c.close();
8 });
9

10 s.listen(8000);



% node server.js &
[1] 9120

% telnet localhost 8000
Trying 127.0.0.1...
Connected to localhost.
Escape character is ’ˆ]’.
hello!
Connection closed by foreign host.

%



The "connection" listener can
be provided as the first argument to
tcp.createServer(), so the
program can be simplified:



1 var tcp = require("tcp");
2 tcp.createServer(function (c) {
3 c.send("hello!\n");
4 c.close();
5 }).listen(8000);



File I/O is non-blocking too.

(Something typically hard to do.)



As an example, a program that
outputs the last time /etc/passwd
was modified:

1 var stat = require("posix").stat,
2 puts = require("sys").puts;
3

4 var promise = stat("/etc/passwd");
5

6 promise.addCallback(function (s) {
7 puts("modified: " + s.mtime);
8 });



A promise is a kind of
EventEmitter which emits either
"success" or "error". (But not
both.)

All file operations return a promise.



promise.addCallback(cb)

is just API sugar for

promise.addListener("success", cb)



Simple HTTP Server:

1 var http = require("http");
2

3 http.createServer(function (req,res) {
4 res.sendHeader(200,
5 {"Content-Type": "text/plain"});
6 res.sendBody("Hello\r\n");
7 res.sendBody("World\r\n");
8 res.finish();
9 }).listen(8000);



% node http_server.js &
[4] 27355

% curl -i http://localhost:8000/
HTTP/1.1 200 OK
Content-Type: text/plain
Connection: keep-alive
Transfer-Encoding: chunked

Hello
World

%



Streaming HTTP Server:

1 var http = require("http");
2 http.createServer(function (req,res) {
3 res.sendHeader(200,
4 {"Content-Type": "text/plain"});
5

6 res.sendBody("Hel");
7 res.sendBody("lo\r\n");
8

9 setTimeout(function () {
10 res.sendBody("World\r\n");
11 res.finish();
12 }, 2000);
13 }).listen(8000);



% node http_server2.js &
[4] 27355
% curl http://localhost:8000/
Hello

Two seconds later...

% node http_server2.js &
[4] 27355
% curl http://localhost:8000/
Hello
World
%



1 var sys = require("sys");
2 sys.exec("ls -l /")
3 .addCallback(function (output) {
4 sys.puts(output);
5 });

Programs can be run with
sys.exec()



But Node never forces buffering

∃ a lower-level facility to stream data
through the STDIO of the child
procresses.

Simple IPC.



1 var puts = require("sys").puts;
2

3 var cat =
4 process.createChildProcess("cat");
5

6 cat.addListener("output",
7 function (data) {
8 if (data) sys.puts(data);
9 });

10

11 cat.write("hello ");
12 cat.write("world\n");
13 cat.close();



Demo / Experiment
An IRC Daemon written in javascript.

irc.nodejs.org
#node.js
Source code:
http://tinyurl.com/ircd-js
http://gist.github.com/a3d0bbbff196af633995

http://tinyurl.com/ircd-js
http://gist.github.com/a3d0bbbff196af633995


Internal Design



I V8 (Google)

I libev event loop library (Marc Lehmann)

I libeio thread pool library (Marc Lehmann)

I http-parser a ragel HTTP parser (Me)

I evcom stream socket library on top of libev
(Me)

I udns non-blocking DNS resolver (Michael
Tokarev)



Blocking (or possibly blocking)
system calls are executed in the
thread pool.

Signal handlers and thread pool
callbacks are marshaled back into
the main thread via a pipe.



% node myscript.js < hugefile.txt

STDIN_FILENO will refer to a file.

Cannot select() on files;
read() will block.



Solution: Start a pipe, and a
“pumping thread”.

Pump data from blocking fd into pipe.

Main thread can poll for data on the
pipe.

(See deps/coupling if you’re interested)



Future
I Fix API warts.

I More modularity; break Node into shared objects.

I Include libraries for common databases in
distribution.

I Improve performance.

I TLS support

I Web Worker-like API. (Probably using
ChildProcess)



Future

Version 0.2 in late December or
January.

Core API will be frozen.



Questions...?
http://nodejs.org/

ry@tinyclouds.org

http://nodejs.org/

