
A Proof of Pythagorian’s Theorem

Pythagorian’s theorem expresses an equality about the lengths
of the sides of a right triangle. It says that if the length of the
hypothinus is c and lengths of the other sides are a and b
then

a2 + b2 = c2.

This is proved by the figure above. The large white square on
the left is c2. The two squares on the right are a2 and b2.

Take care before accepting such reasoning. Graphical proofs
lack formalism and can deceive the casual observer:



√
2 is irrational

A number is rational if it can be written as a fraction of two
integers. If it cannot be, then it is called irrational. For exam-
ple, 1 is rational because 1 = 1/1. Since −1.5 can be expressed
as −3/2 it’s also rational.
√

2 is irrational.

If it were, then one could say that
√

2 = p/q where p and
q were integers. p and q can supposed to have no common
divisors. (If p and q did have a common divisor, it could be
cancled out to produce an irreducible faction.) It follows from
p/q =

√
2 that p = q

√
2 and squaring both sides produces

p2 = 2q2.

Thus, p2 is even because it is 2 times some integer. p must
also be even. (The square of an odd number is odd,

(2a+ 1)2 = 4a2 + 4a+ 1 = 2(2a2 + 2a) + 1,

so p cannot be odd.) Since p is even, it can be expressed as
2n for some integer n.

√
2 =

p

q
=

2n

q

With some algebra, that equation can be manipulated into
q2 = 2n2. As before, q2 is even because it is 2 times something,
and hence q is also even. But that is a contradiction: q and
p cannot both be even because they would have a common
divisor 2, that they cannot have.



Approximating π

By picking points randomly from a square one can calculuate
π. Keep track of how many points from the square you pick
lay in the inscribed circle. Supposing the square’s edges are
length 2, then the inscribed circle has radius 1. Thus the area
of the circle is πr2 = π. The area of the square is 4. The ratio
of points picked from the circle to the total number of picked
points will converge to π/4.

This is a C program to demonstrate the convergence.

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

int main(void) {

unsigned int total=0, inside=0;

while(1) {

float x = (float)rand() / RAND_MAX;

float y = (float)rand() / RAND_MAX;

total++;

if(sqrt(x*x + y*y) < 1) inside++;

printf("%f\n", 4.0 * inside / total);

}

}



Different Sizes of ∞
There are different sizes of infinity. Small infinites, big in-
finities, monsterous infinities... The smallest infinity is called
a countable infinity. For example, the set of integers, Z =
{. . . ,−2,−1, 0, 1, 2, . . . }, is a countably infinite set. The real
numbers, R, which is the the union of the rational numbers
and the irrational numbers, is a larger infinity.

At first glance it might seem intuitive that the real numbers is
larger size of infinity than the integers. After all, just between
the two integers 1 and 2 are infinitely many real numbers! But
the concept is subtler: the rational numbers also have infinitely
many members between the integers 1 and 2 but the rational
numbers and the integers are the same size of infinity–they are
both countable.

A set S is countably infinite if |S| = |Z|.

To explain this a formal definition is needed for the meaning
of the equals sign in |Q| = |Z|. For finite sets this is known,
count the number of elements in each set – if they have the
same count, they are the same size. In infinite sets, if there
is a pairing of elements from the first set with elements of the
second set, such that all elements have a unique partener in
the other set, then the two sets have the same cardinality, the
same size.

For example, the set of even integers is the same size as the
set of integers. To assert this a pairing is required. Pair each
integer n with the even integer 2n.

−3 −2 −1 0 1 2 3
l l l l l l l
−6 −4 −2 0 2 4 6



Because each even integer has a corresponding general inte-
ger partener and vice versa, the even integers have the same
cardinality as the integers.

More generally, infinite subsets of countable sets must be count-
able themselves; this is what was meant by the smallest infin-
ity. Because the natural numbers, N = {1, 2, 3, . . . }, are an
infinite subset of Z, they are both countable, |N| = |Z|.

To see that Q is also countable, pair each integer with each
fraction. The pairing can leave no integers without a fraction
and no fractions without an integer. Equivelantly pair each
fraction with a natural number – count them.

0/1 -1 1 -2 2 -3 3 -4 4 · · ·
1 -1/1 1/1 -2/1 2/1 -3/1 3/1 -4/1 4/1 · · ·
2 -1/2 1/2 -2/2 2/2 -3/4 3/2 -4/2 4/2 · · ·
3 -1/3 1/3 -2/3 2/3 -3/4 3/3 -4/3 4/3 · · ·
4 -1/4 1/4 -2/4 2/4 -3/4 3/4 -4/4 4/4 · · ·
...

...
...

...
...

...
...

...

This table provides a means to count the rational numbers, to
provide a bijection to B. Every fraction is listed somewhere
in this infinitely large table.

The first element of the rational numbers is 0 = 0/1 in the
top left corner of the table. The second element of Q is just
nearby −1 = −1/1. Moving right one cell, the thrid element
is 1 = 1/1, then diagonally southwest to the fouth −1/2. The
fifth (-1/3), the sixith (1/2), and the seventh (-2/1) are found
by walking northeast on the diagonal. Moving due east from
(-2/1) is the eighth element of the fractions: 2 = 2/1. The
next 3 are found on the same diagonal by moving southwest.
And so one snakes up and down the chart, naming off every
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rational number and thereby giving pairing with each natural
number.

0 1 2 3 4 5 6
l l l l l l l

0/1 −1/1 −1/2 −1/3 1/2 −2/1 2/1

As the count snakes out across the table, many duplicate ra-
tional numbers are seen: 1/1 = 2/2 = 3/3, −1/2 = −2/4 =
−4/8, etc. Just skip over duplicate table entries when creating
the pairing – otherwise some fractions would be paired with
multiple natural numbers.

|Q| = |N| = |Z|. The rational numbers are countable.

Think of the rational numbers as a dust scattered evenly ac-
cross the number line. Although pervasive, the dust is ul-
timately enumerable. The irrational numbers, on the other



hand, are a thick paint slabbed across the line. The irrational
numbers are more numerous than the rational numbers – even
though there are infinitely many rational numbers. The irra-
tional numbers are so numerous that they transcend infinite
countability to uncountability. No matter how hard one tries,
it is impossible to enumerate them.

Suppose the irrational numbers were countable. Then there
would be a pairing

0 1 2 3 4 5 6
l l l l l l l
i0 i1 i2 i3 i4 i5 i6

Where i· is irrational.



Gabriel’s Horn

Gabriel’s Horn is a surface floating in 3 di-
mensional space. It is formed by taking the
graph of the function r(x) = 1/x, restricted
the domain x ≥ 1, and spinning it around
the x-axis.

The volume of the horn is∫ ∞

1

πr(x)2dx = −π[x−1]∞1

= π(1− lim
x→∞

x−1)

= π

but the surface area is∫ ∞

1

2πr(x)
√

1 + r′(x)2dx > 2π

∫ ∞

1

r(x)dx

= 2π[ln(x)]∞1
= 2π lim

x→∞
ln(x)

= ∞.

One could spend a lifetime of fruitless labor
attempting to paint the horn but a single
glob (of π cubic units) of paint would fill
it.

The name references a Christian legend
that the archangel Gabriel will blow a horn
to announce Judgement Day. For the
proper effect, imagine Gabriel sounding the
horn from the mouthpeice at heaven (+∞)
before racing to our coordinate system to
deliver the apocalypse.



Reminder of what continuous means.



Borsuk-Ulam theorem

At this very instance somewhere over the jungles, mountains,
or oceans is a point floating in the atmosphere. On the exact
opposite side of the earth, at the same exact instance, is an-
other point. Irrelivant of hurricanes or monsumes these two
places have exactly the same tempature and exactly the same
atmospheric preasure.

Surprisingly the validity of this claim can be argued without
appealing to physical laws but only by using mathematics.

To start we simplfy the assertion to: finding anti-polar points
on a circle with the same tempature. Take the smallest circle
containg the equater which does not intersect anything but
air. The tempature on that circle is continuous (or if not, at
least approximated by a continuous function very exactly).

Let C be the circle. (The circle is only the border of the disc–
it has no area. Use the unit circle if you want to be formal.)
If C has assigned to each of its points a continuously varying
real number,

then there are two points, directly opposite of each other, that
have the same real number assigned to themselves. In math:



If there is a continuous function f : C → R, then there exists
x, y ∈ C with x = −y (the minus here means subtraction
in two dimensional vectors or complex numbers) and f(x) =
f(−y).

Suppose there was not such points. Define a function g(x) =
f(x) − f(−x). Because no point on the circle has the same
f -value on the opposite side, g(x) 6= 0 always. Then pick any
random point x on the circle. f(x) 6= f(−x) by assumption,
so either f(x) > f(−x) or f(−x) > f(x). The argument will
be the same either way–just assume f(x) > f(−x). Thus
g(x) > 0.



Infinitely many primes



Euler’s identity

eπi + 1 = 0

Monty Hall Problem

Probability of people sharing a birth-
day

Fermat’s little theorem Fermat primality test?

J.W. Alexander’s Horned Sphere

Imagine two arms making a chain link with their thumb and
index fingers. Neither hand touches the other. But the thumb
and index fingers are not normal–nearing the tip the fingers
begin to resemble arms. The finger-arm itself has a hand and
again creates a link with its partener with the thumb and index
finger. Zooming in further these fingers become arms with in
turn are linking each other. Continuing on forever one gets
the J.W. Alexander’s Horned Sphere.

blah blah blah

Combing a Hairy Ball

The Long Line

halting problem? Too well known?

Gödel’s incompleteness theorem Too well
known?

continuum hypothesis? Too well known?

Circle of polynomials? Too well known?


